Functional Materials by Design Group
Dr. Saurabh Ghosh (Group Leader)
Welcome to FMDG !
Dr. Saurabh Ghosh joined SRM Research Institute and the Department of Physics and Nanotechnology as an Assistant Professor (Research) in June 2017. Before joining SRM, he worked as a postdoctoral researcher in the USA from April 2011 to May 2017 (Cornell University, Ithaca, NY and Vanderbilt University, Nashville, TN /Oak Ridge National Laboratory, Nashville, TN). In SRM, he has formed and, at present, leading the ‘Functional Materials by Design’ (FMD) group.
*Currently, I'm a visiting Scientist (on sabbatical leave January 2023 - December 2023): Dept. of Nuclear Engineering, University of Tennessee Knoxville, Knoxville, USA. Host: Prof. Brian D. Wirth, Governor’s Chair Professor, University of Tennesee, Knoxville, USA, and working on "machine learning on nuclear materials*
The objective of the FMD group is to design functional materials from the first principles Density Functional Theory (DFT) calculations and Machine Learning (ML), guided by group theoretical techniques and supported by phenomenological models.
Using DFT, structural, electronic, magnetic and many other properties of a many-electron system can be determined. With the advancement of modern supercomputing capabilities, DFT is not only successful in explaining experimental findings but also in predicting materials with new functionalities. On the other hand, machine learning (ML) refers to the automated detection of meaningful patterns in the data. It is a common tool to use in a task which requires information extraction from a large data set. The ML-based algorithms are used in search engines, credit card transitions, digital cameras, flight scheduling and many more, in almost every accepts of our modern-day life. In this regard, the application of ML and artificial intelligence (AI) based approach is rather new in materials science. The ML-based approach can be used to predict new materials for enhanced functionality or to make strategies to enhance a particular property of a particular material.
In the context of designing new materials, understanding the ‘structure-property’ relation of a material is the key. The group is focused on designing functional materials by tailoring ‘structure-properties’ relations that are impactful in oxide electronics, spintronics, and energy research.
Our aim is to combine quantum mechanics (QM) with machine learning (ML) techniques for designing new materials for oxide electronics, spintronics, and energy storage.
The FMD group is forming strong collaborations with other experimental and theory groups (in the USA, Sweden, Italy, Japan, Singapore and India) for research activities.
The group is highly productive in publishing high-quality Journals (i.e., Phys. Rev. Lett., Nature Communication, Phys. Rev. B., Chemistry of Materials etc.).